K. Tan, G. Hooker, and E. L. Ionides (2024). Accelerated inference for partially observed Markov processes using automatic differentiation. arXiv 2407.03085. (Link)
M. A. E. Peters, A. A. King, and N. Wale (2024). Red blood cell dynamics during malaria infection challenge the assumptions of mathematical models of infection dynamics. bioRxiv 2024.01.10.575051. (Link)
S. Moore, S. Cavany, T. A. Perkins, and G. F. C. España (2024). Projecting the future impact of emerging SARS-CoV-2 variants under uncertainty: Modeling the initial Omicron outbreak. Epidemics 47: 100759. (Link)
M. S. Mietchen, E. Clancey, C. McMichael, and E. T. Lofgren (2024). Estimating SARS-CoV-2 transmission parameters between coinciding outbreaks in a university population and the surrounding community. medRxiv 2024.01.10.24301116. (Link)
J. Li, E. L. Ionides, A. A. King, M. Pascual, and N. Ning (2024). Inference on spatiotemporal dynamics for coupled biological populations. Journal of The Royal Society Interface 21: 20240217. (Link)
A. A. King, Q. Lin, and E. L. Ionides (2024). Exact phylodynamic likelihood via structured Markov genealogy processes. arXiv 2405.17032. (Link)
D. He, Y. Artzy-Randrup, S. S. Musa, T. Gräf, F. Naveca, and L. Stone (2024). Modelling the unexpected dynamics of COVID-19 in Manaus, Brazil. Infectious Disease Modelling 9: 557–568. (Link)
K. Eslami and H. Lee (2024). Overreaction and the value of information in a pandemic. Eur Econ Rev 161: 104624. (Link)
M. Domenech de Cellès and P. Rohani (2024). Pertussis vaccines, epidemiology and evolution. Nat Rev Microbiol. (Link)
C. Byrne, A. C. Márquez, B. Cai, D. Coombs, and S. Gantt (2024). Spatial kinetics and immune control of murine cytomegalovirus infection in the salivary glands. bioRxiv 2024.02.22.581694. (Link)
M. Briga, E. Goult, T. S. Brett, P. Rohani, and M. Domenech de Cellès (2024). Maternal pertussis immunization and the blunting of routine vaccine effectiveness: a meta-analysis and modeling study. Nat Commun 15:. (Link)
D. Wu, H. Petousis-Harris, J. Paynter, V. Suresh, and O. J. Maclaren (2023). Likelihood-based estimation and prediction for a measles outbreak in Samoa. Infectious Disease Modelling 8: 212–227. (Link)
J. Wheeler, A. Rosengart, Z. Jiang, K. Tan, N. Treutle, and E. Ionides (2023). Informing policy via dynamic models: cholera in Haiti. arXiv 2301.08979. (Link)
C. Trevisin, E. Bertuzzo, D. Pasetto, L. Mari, S. Miccoli, R. Casagrandi, M. Gatto, and A. Rinaldo (2023). Spatially explicit effective reproduction numbers from incidence and mobility data. Proc Natl Acad Sci 120:. (Link)
P. Szczepocki (2023). Estimation of the Cholesky multivariate stochastic volatility model using iterated filtering. Econometrics 27: 44–58. (Link)
N. A. Molodecky, H. Jafari, R. M. Safdar, J. A. Ahmed, A. Mahamud, A. S. Bandyopadhyay, H. Shukla, A. Quddus, M. Zaffran, R. W. Sutter, N. C. Grassly, and I. M. Blake (2023). Modelling the spread of serotype-2 vaccine derived-poliovirus outbreak in Pakistan and Afghanistan to inform outbreak control strategies in the context of the COVID-19 pandemic. Vaccine 41: A93–A104. (Link)
F. M. G. Magpantay, J. Mao, S. Ren, S. Zhao, and T. Meadows (2023). The reinfection threshold, revisited. Math Biosci 363: 109045. (Link)
E. L. Ionides, K. Asfaw, J. Park, and A. A. King (2023). Bagged filters for partially observed interacting systems. J Am Stat Assoc 118: 1078–1089. (Link)
D. He, L. Lin, Y. Artzy-Randrup, H. Demirhan, B. J. Cowling, and L. Stone (2023). Resolving the enigma of Iquitos and Manaus: A modeling analysis of multiple COVID-19 epidemic waves in two Amazonian cities. Proc Natl Acad Sci 120: e2211422120. (Link)
L. A. B. Guevara, E. Goult, D. Rodriguez, L. J. Hernandez, B. Kaufer, T. Kurth, and M. Domenech de Cellès (2023). Delineating the seasonality of varicella and its association with climate in the tropical country of Colombia. J Infect Dis jiad244. (Link)
M. E. Griffiths, D. K. Meza, D. T. Haydon, and D. G. Streicker (2023). Inferring the disruption of rabies circulation in vampire bat populations using a betaherpesvirus-vectored transmissible vaccine. Proc Natl Acad Sci 120: e2216667120. (Link)
D. V. Gokhale, T. S. Brett, B. He, A. A. King, and P. Rohani (2023). Disentangling the causes of mumps reemergence in the United States. Proc Natl Acad Sci 120: e2207595120. (Link)
J. M. Drake, A. Handel, É. Marty, E. B. O'Dea, T. O'Sullivan, G. Righi, and A. T. Tredennick (2023). A data-driven semi-parametric model of SARS-CoV-2 transmission in the United States. PLOS Computational Biology 19: e1011610. (Link)
B. de Courson, V. Thouzeau, and N. Baumard (2023). Quantifying the scientific revolution. Evolutionary Human Sciences 5: E19. (Link)
T. S. Brett, S. Bansal, and P. Rohani (2023). Charting the spatial dynamics of early SARS-CoV-2 transmission in Washington state. PLoS Comput Biol 19: e1011263. (Link)
O. N. Bjørnstad (2023). Epidemics. Springer. (Link)
A. Beloconi, B. O. Nyawanda, G. Bigogo, S. Khagayi, D. Obor, I. Danquah, S. Kariuki, S. Munga, and P. Vounatsou (2023). Malaria, climate variability, and interventions: modelling transmission dynamics. Sci Rep 13: 7367. (Link)
R. A. Aogo, J. V. Zambrana, N. Sanchez, S. Ojeda, G. Kuan, A. Balmaseda, A. Gordon, E. Harris, and L. C. Katzelnick (2023). Effects of boosting and waning in highly exposed populations on dengue epidemic dynamics. Sci Transl Med 15:. (Link)
B. Zhang, W. Huang, S. Pei, J. Zeng, W. Shen, D. Wang, G. Wang, T. Chen, L. Yang, P. Cheng, D. Wang, Y. Shu, and X. Du (2022). Mechanisms for the circulation of influenza A(H3N2) in China: a spatiotemporal modelling study. PLOS Pathogens 18: e1011046. (Link)
Y. Yu, Y. Liu, S. Zhao, and D. He (2022). A simple model to estimate the transmissibility of the Beta, Delta, and Omicron variants of SARS-COV-2 in South Africa. Math Biosci Eng 19: 10361–10373. (Link)
H. Williams, A. Scharf, A. R. Ryba, D. R. Norris, D. J. Mennill, A. E. M. Newman, S. M. Doucet, and J. C. Blackwood (2022). Cumulative cultural evolution and mechanisms for cultural selection in wild bird songs. Nat Commun 13: 4001. (Link)
A. T. Tredennick, E. B. O'Dea, M. J. Ferrari, A. W. Park, P. Rohani, and J. M. Drake (2022). Anticipating infectious disease re-emergence and elimination: a test of early warning signals using empirically based models. J R Soc Interface 19: 20220123. (Link)
G. Shirreff, J.-R. Zahar, S. Cauchemez, L. Temime, and L. Opatowski (2022). Measuring basic reproduction number to assess effects of nonpharmaceutical interventions on nosocomial SARS-CoV-2 transmission. Emerg Infect Dis 28: 1345–1354. (Link)
M. Shah, G. Ferra, S. Fitzgerald, P. J. Barreira, P. C. Sabeti, and A. Colubri (2022). Containing the spread of mumps on college campuses. R Soc Open Sci 9: 210948. (Link)
L. Sartori, M. Pereira, and S. Oliva (2022). Time-scale analysis and parameter fitting for vector-borne diseases with spatial dynamics. Bull Math Biol 84: 124. (Link)
M. Santos-Vega, P. P. Martinez, K. G. Vaishnav, V. Kohli, V. Desai, M. J. Bouma, and M. Pascual (2022). The neglected role of relative humidity in the interannual variability of urban malaria in Indian cities. Nat Commun 13: 533. (Link)
D. Pak, S. Carran, D. Biddinger, B. Nelson, and O. N. Bjørnstad (2022). Incorporating diapause to predict the interannual dynamics of an important agricultural pest. Popul Ecol 64: 267–279. (Link)
K. Newman, R. King, V. Elvira, P. Valpine, R. S. McCrea, and B. J. T. Morgan (2022). State-space models for ecological time-series data: Practical model-fitting. Methods Ecol Evol 14: 26–42. (Link)
Y. Liu, Y. Yu, Y. Zhao, and D. He (2022). Reduction in the infection fatality rate of omicron variant compared with previous variants in South Africa. Int J Infect Dis 120: 146–149. (Link)
A. A. King, Q. Lin, and E. L. Ionides (2022). Markov genealogy processes. Theor Popul Biol 143: 77–91. (Link)
S. J. Fox, M. Lachmann, M. Tec, R. Pasco, S. Woody, Z. Du, X. Wang, T. A. Ingle, E. Javan, M. Dahan, K. Gaither, M. E. Escott, S. I. Adler, S. C. Johnston, J. G. Scott, and L. A. Meyers (2022). Real-time pandemic surveillance using hospital admissions and mobility data. Proc Natl Acad Sci 119: e2111870119. (Link)
J. E. Domeyer, J. D. Lee, H. Toyoda, B. Mehler, and B. Reimer (2022). Driver-pedestrian perceptual models demonstrate coupling: implications for vehicle automation. IEEE Trans Human-Mach Syst 52: 1–10. (Link)
M. Domenech de Cellès, E. Goult, J.-S. Casalegno, and S. C. Kramer (2022). The pitfalls of inferring virus-virus interactions from co-detection prevalence data: application to influenza and SARS-CoV-2. Proc R Soc Lond B 289: 20212358. (Link)
M. Domenech de Cellès, A. Wong, L. A. B. Guevara, and P. Rohani (2022). Immunological heterogeneity informs estimation of the durability of vaccine protection. J R Soc Interface 19: 20220070. (Link)
F. Dablander, H. Heesterbeek, D. Borsboom, and J. M. Drake (2022). Overlapping timescales obscure early warning signals of the second COVID-19 wave. Proc R Soc Lond B 289: 20211809. (Link)
J. W. Cabore, H. C. Karamagi, H. K. Kipruto, J. K. Mungatu, J. A. Asamani, B. Droti, R. Titi-ofei, A. B. W. Seydi, S. N. Kidane, T. Balde, A. S. Gueye, L. Makubalo, and M. R. Moeti (2022). COVID-19 in the 47 countries of the WHO African region: a modelling analysis of past trends and future patterns. Lancet Global Health 10: e1099–e1114. (Link)
C. Bravo-Vega, M. Santos-Vega, and J. M. Cordovez (2022). Disentangling snakebite dynamics in Colombia: How does rainfall and temperature drive snakebite temporal patterns?. PLoS Negl Trop Dis 16: e0010270. (Link)
S. Boonpatcharanon, J. M. Heffernan, and H. Jankowski (2022). Estimating the basic reproduction number at the beginning of an outbreak. PLoS ONE 17: e0269306. (Link)
K. M. Bakker, M. C. Eisenberg, R. J. Woods, and M. E. Martinez (2022). Identifying optimal vaccination scenarios to reduce Varicella zoster virus transmission and reactivation. BMC Med 20:. (Link)
J. Andrade and J. Duggan (2022). Inferring the effective reproductive number from deterministic and semi-deterministic compartmental models using incidence and mobility data. PLoS Comput Biol 18: e1010206. (Link)
B. Zhang, S. Liang, G. Wang, C. Zhang, C. Chen, M. Zou, W. Shen, H. Long, D. He, Y. Shu, and X. Du (2021). Synchronized nonpharmaceutical interventions for the control of COVID-19. Nonlinear Dyn Psychol Life Sci 106: 1477–1489. (Link)
W. Yang, D. Zhang, L. Peng, C. Zhuge, and L. Hong (2021). Rational evaluation of various epidemic models based on the COVID-19 data of China. Epidemics 37: 100501. (Link)
X. Wang, Z. Du, K. Johnson, R. Pasco, S. Fox, M. Lachmann, J. McLellan, and L. A. Meyers (2021). Effects of COVID-19 vaccination timing and risk prioritization on mortality rates, United States. Emerg Infect Dis 27: 1976. (Link)
R. Subramanian, Q. He, and M. Pascual (2021). Quantifying asymptomatic infection and transmission of COVID-19 in New York City using observed cases, serology, and testing capacity. Proc Natl Acad Sci 118: e2019716118. (Link)
X. Rodo, P. P. Martinez, A. Siraj, and M. Pascual (2021). Malaria trends in Ethiopian highlands track the 2000 ‘slowdown’ in global warming. Nat Commun 12: 1555. (Link)
D. Pasetto, J. C. Lemaitre, E. Bertuzzo, M. Gatto, and A. Rinaldo (2021). Range of reproduction number estimates for COVID-19 spread. Biochem Biophys Res Commun 538: 253–258. (Link)
S. W. Park, M. Pons-Salort, K. Messacar, C. Cook, L. Meyers, J. Farrar, and B. T. Grenfell (2021). Epidemiological dynamics of enterovirus D68 in the United States and implications for acute flaccid myelitis. Sci Transl Med 13: eabd2400. (Link)
M. P. Kain, M. L. Childs, A. D. Becker, and E. A. Mordecai (2021). Chopping the tail: How preventing superspreading can help to maintain COVID-19 control. Epidemics 34: 100430. (Link)
T. Ganyani, C. Faes, and N. Hens (2021). Simulation and analysis methods for stochastic compartmental epidemic models. Annu Rev Stat Appl 8: 69–88. (Link)
M. L. Childs, M. P. Kain, M. J. Harris, D. Kirk, L. Couper, N. Nova, I. Delwel, J. Ritchie, A. D. Becker, and E. A. Mordecai (2021). The impact of long-term non-pharmaceutical interventions on COVID-19 epidemic dynamics and control: the value and limitations of early models. Proc R Soc Lond B 288: 20210811. (Link)
Y. Cai, S. Zhao, Y. Niu, Z. Peng, K. Wang, D. He, and W. Wang (2021). Modelling the effects of the contaminated environments on tuberculosis in Jiangsu, China. J Theor Biol 508: 110453. (Link)
R. K. Borchering, C. E. Gunning, D. V. Gokhale, K. B. Weedop, A. Saeidpour, T. S. Brett, and P. Rohani (2021). Anomalous influenza seasonality in the United States and the emergence of novel influenza B viruses. Proc Natl Acad Sci 118: e2012327118. (Link)
A. D. Becker, K. H. Grantz, S. T. Hegde, S. Bérubé, D. A. T. Cummings, and A. Wesolowski (2021). Development and dissemination of infectious disease dynamic transmission models during the COVID-19 pandemic: what can we learn from other pathogens and how can we move forward?. Lancet Digital Health 3: e41–e50. (Link)
M. Auger-Méthé, K. Newman, D. Cole, F. Empacher, R. Gryba, A. A. King, V. Leos-Barajas, J. Mills Flemming, A. Nielsen, G. Petris, and L. Thomas (2021). A guide to state-space modeling of ecological time series. Ecol Monogr 91: e01470. (Link)
K. Asfaw, J. Park, A. Ho, A. A. King, and E. L. Ionides (2021). Statistical inference for spatiotemporal partially observed Markov processes via the R package spatPomp. arXiv 2101.01157. (Link)
L. K. Whittles, P. J. White, and X. Didelot (2020). Assessment of the potential of vaccination to combat antibiotic resistance in gonorrhea: a modeling analysis to determine preferred product characteristics. Clin Infect Dis. (Link)
P. Szczepocki (2020). Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process. Statistics in Transition New Series 21: 173–187. (Link)
L. Stone, D. H. He, S. Lehnstaedt, and Y. Artzy-Randrup (2020). Extraordinary curtailment of massive typhus epidemic in the Warsaw Ghetto. Sci Adv 6: eabc0927. (Link)
T. Stocks, L. J. Martin, S. Kühlmann-Berenzon, and T. Britton (2020). Dynamic modeling of hepatitis C transmission among people who inject drugs. Epidemics 30: 100378. (Link)
J. Park and E. L. Ionides (2020). Inference on high-dimensional implicit dynamic models using a guided intermediate resampling filter. Stat Comput 30: 1497–1522. (Link)
S. S. Musa, S. Zhao, D. Gao, Q. Lin, G. Chowell, and D. He (2020). Mechanistic modelling of the large-scale Lassa fever epidemics in Nigeria from 2016 to 2019. J Theor Biol 493: 110209. (Link)
E. C. Lee, D. L. Chao, J. C. Lemaitre, L. Matrajt, D. Pasetto, J. Perez-Saez, F. Finger, A. Rinaldo, J. D. Sugimoto, M. E. Halloran, I. M. Longini, R. Ternier, K. Vissieres, A. S. Azman, J. Lessler, and L. C. Ivers (2020). Achieving coordinated national immunity and cholera elimination in Haiti through vaccination: a modelling study. Lancet Global Health 8: e1081–e1089. (Link)
D. He, S. Zhao, Q. Lin, S. S. Musa, and L. Stone (2020). New estimates of the Zika virus epidemic attack rate in northeastern Brazil from 2015 to 2016: a modelling analysis based on Guillain-Barré syndrome (gbs) surveillance data. PLoS Negl Trop Dis 14: e0007502. (Link)
S. Funk and A. A. King (2020). Choices and trade-offs in inference with infectious disease models. Epidemics 30: 100383. (Link)
M. Domenech de Cellès, H. Campbell, R. Borrow, M.-K. Taha, and L. Opatowski (2020). Transmissibility and pathogenicity of the emerging meningococcal serogroup W sequence type-11 complex South American strain: a mathematical modeling study. BMC Med 18: 1–12. (Link)
G. G. Cotterill, P. C. Cross, J. A. Merkle, J. D. Rogerson, B. M. Scurlock, and J. T. du Toit (2020). Parsing the effects of demography, climate and management on recurrent brucellosis outbreaks in elk. J Appl Ecol 57: 379–389. (Link)
A. Colubri, M. Kemball, K. Sani, C. Boehm, K. Mutch-Jones, B. Fry, T. Brown, and P. C. Sabeti (2020). Preventing outbreaks through interactive, experiential real-life simulations. Cell 182: 1366–1371. (Link)
Q. Clairon and A. Samson (2020). Optimal control for estimation in partially observed elliptic and hypoelliptic linear stochastic differential equations. Stat Inference Stoch Process 23: 105–127. (Link)
C. Bretó, E. L. Ionides, and A. A. King (2020). Panel data analysis via mechanistic models. J Am Stat Assoc 115: 1178–1188. (Link)
A. D. Becker, S. H. Zhou, A. Wesolowski, and B. T. Grenfell (2020). Coexisting attractors in the context of cross-scale population dynamics: measles in London as a case study. Proc R Soc Lond B 287: 20191510. (Link)
N. Wale, M. J. Jones, D. G. Sim, A. F. Read, and A. A. King (2019). The contribution of host cell-directed vs. parasite-directed immunity to the disease and dynamics of malaria infections. Proc Natl Acad Sci 201908147. (Link)
T. Stocks (2019). Iterated filtering methods for Markov process epidemic models. In: Handbook of Infectious Disease Data Analysis (edited by L. Held, N. Hens, P. O’Neill, and J. Wallinga) Chapman and Hall/CRC, New York. (Link)
E. B. O'Dea and J. M. Drake (2019). Disentangling reporting and disease transmission. Theor Ecol 12: 89–98. (Link)
N. Noori and P. Rohani (2019). Quantifying the consequences of measles-induced immune modulation for whooping cough epidemiology. Philos Trans R Soc London B 374: 20180270. (Link)
J. A. Marino Jr., S. D. Peacor, D. B. Bunnell, H. A. Vanderploeg, S. A. Pothoven, A. K. Elgin, J. R. Bence, J. Jiao, and E. L. Ionides (2019). Evaluating consumptive and nonconsumptive predator effects on prey density using field time-series data. Ecology 100: e02583. (Link)
F. M. G. Magpantay, A. King A., and P. Rohani (2019). Age-structure and transient dynamics in epidemiological systems. J R Soc Interface 16: 20190151. (Link)
J. Lemaitre, D. Pasetto, J. Perez-Saez, C. Sciarra, J. F. Wamala, and A. Rinaldo (2019). Rainfall as a driver of epidemic cholera: Comparative model assessments of the effect of intra-seasonal precipitation events. Acta Trop 190: 235–243. (Link)
M. Domenech de Cellès, H. Arduin, D. Lévy-Bruhl, S. Georges, C. Souty, D. Guillemot, L. Watier, and L. Opatowski (2019). Unraveling the seasonal epidemiology of pneumococcus. Proc Natl Acad Sci 116: 1802. (Link)
L. E. Coffeng, E. A. Le Rutte, J. Muñoz, E. R. Adams, J. M. Prada, S. J. de Vlas, and G. F. Medley (2019). Impact of changes in detection effort on control of visceral leishmaniasis in the Indian subcontinent. J Infect Dis 221: S546–S553. (Link)
O. N. Bjornstad (2019). Population dynamics of pathogens. In: Handbook of Infectious Disease Data Analysis (edited by L. Held, N. Hens, P. O’Neill, and J. Wallinga) Chapman and Hall/CRC, New York. (Link)
A. D. Becker, A. Wesolowski, O. N. Bjornstad, and B. T. Grenfell (2019). Long-term dynamics of measles in London: Titrating the impact of wars, the 1918 pandemic, and vaccination. PLoS Comput Biol 15: e1007305. (Link)
S. Zhao, L. Stone, D. Gao, and D. He (2018). Modelling the large-scale yellow fever outbreak in Luanda, Angola, and the impact of vaccination. PLoS Negl Trop Dis 12: e0006158. (Link)
T. Stocks, T. Britton, and M. Höhle (2018). Model selection and parameter estimation for dynamic epidemic models via iterated filtering: application to rotavirus in Germany. Biostatistics 400–416. (Link)
E. O. Romero-Severson, R. M. Ribeiro, and M. Castro (2018). Noise is not error: detecting parametric heterogeneity between epidemiologic time series. Front Microbiol 9: 1529. (Link)
M. Pons-Salort and N. C. Grassly (2018). Serotype-specific immunity explains the incidence of diseases caused by human enteroviruses. Science 361: 800. (Link)
Q. Lin, A. P. Chiu, S. Zhao, and D. He (2018). Modeling the spread of Middle East respiratory syndrome coronavirus in Saudi Arabia. Stat Methods Med Res 27: 1968–1978. (Link)
D. A. Kennedy, P. A. Dunn, and A. F. Read (2018). Modeling Marek’s disease virus transmission: A framework for evaluating the impact of farming practices and evolution. Epidemics 23: 85–95. (Link)
M. Domenech de Cellès, F. M. G. Magpantay, A. A. King, and P. Rohani (2018). The impact of past vaccination coverage and immunity on pertussis resurgence. Sci Transl Med 10: eaaj1748. (Link)
C. Bretó (2018). Modeling and inference for infectious disease dynamics: a likelihood-based approach. Statist Sci 33: 57–69. (Link)
L. K. Whittles, P. J. White, and X. Didelot (2017). Estimating the fitness cost and benefit of cefixime resistance in Neisseria gonorrhoeae to inform prescription policy: a modelling study. PLoS Med 14: e1002416. (Link)
S. L. Ranjeva, E. B. Baskerville, V. Dukic, L. L. Villa, E. Lazcano-Ponce, A. R. Giuliano, G. Dwyer, and S. Cobey (2017). Recurring infection with ecologically distinct HPV types can explain high prevalence and diversity. Proc Natl Acad Sci 114: 13573–13578. (Link)
P. P. Martinez, R. C. Reiner Jr, M. Roy, B. A. Cash, M. Yunus, A. S. G. Faruque, S. Huq, A. A. King, and M. Pascual (2017). Cholera forecast for Dhaka, Bangladesh, with the 2015–2016 El Niño: lessons learned. PLoS ONE 12: e0172355. (Link)
E. L. Ionides, C. Breto, J. Park, R. A. Smith, and A. A. King (2017). Monte Carlo profile confidence intervals for dynamic systems. J R Soc Interface 14: 20170126. (Link)
X. Du, A. A. King, R. J. Woods, and M. Pascual (2017). Evolution-informed forecasting of seasonal influenza A (H3N2). Sci Transl Med 9: eaan5325. (Link)
M. G. Buhnerkempe, K. C. Prager, C. C. Strelioff, D. J. Greig, J. L. Laake, S. R. Melin, R. L. DeLong, F. M. D. Gulland, and J. O. Lloyd-Smith (2017). Detecting signals of chronic shedding to explain pathogen persistence: Leptospira interrogans in California sea lions. J Anim Ecol 86: 460–472. (Link)
T. Baracchini, A. A. King, M. J. Bouma, X. Rodó, E. Bertuzzo, and M. Pascual (2017). Seasonality in cholera dynamics: a rainfall-driven model explains the wide range of patterns in endemic areas. Adv Water Res 108C: 357–366. (Link)
S. Tavakoli and V. M. Panaretos (2016). Detecting and localizing differences in functional time series dynamics: a case study in molecular biophysics. J Am Stat Assoc 111: 1020–1035. (Link)
P. P. Martinez, A. A. King, M. Yunus, A. S. G. Faruque, and M. Pascual (2016). Differential and enhanced response to climate forcing in diarrheal disease due to rotavirus across a megacity of the developing world. Proc Natl Acad Sci 113: 4092–4097. (Link)
F. M. G. Magpantay, M. Domenech de Cellès, P. Rohani, and A. A. King (2016). Pertussis immunity and epidemiology: mode and duration of vaccine-induced immunity. Parasitology 143: 835–849. (Link)
Q. Lin, Z. Lin, A. P. Y. Chiu, and D. He (2016). Seasonality of influenza A(H7N9) virus in China–-fitting simple epidemic models to human cases. PLoS ONE 11: e0151333. (Link)
A. A. King, D. Nguyen, and E. L. Ionides (2016). Statistical inference for partially observed Markov processes via the R package pomp. J Stat Softw 69: 1–43. (Link)
M. Fasiolo, N. Pya, and S. N. Wood (2016). A comparison of inferential methods for highly nonlinear state space models in ecology and epidemiology. Statist Sci 31: 96–118. (Link)
A. Bhadra and E. L. Ionides (2016). Adaptive particle allocation in iterated sequential Monte Carlo via approximating meta-models. Stat Comput 26: 393–407. (Link)
A. D. Becker, R. B. Birger, A. Teillant, P. A. Gastanaduy, G. S. Wallace, and B. T. Grenfell (2016). Estimating enhanced prevaccination measles transmission hotspots in the context of cross-scale dynamics. Proc Natl Acad Sci 113: 14595–14600. (Link)
D. Barrows (2016). A comparative study of techniques for estimation and inference of nonlinear stochastic time series. Thesis: McMaster University. (Link)
K. M. Bakker, M. E. Martinez-Bakker, B. Helm, and T. J. Stevenson (2016). Digital epidemiology reveals global childhood disease seasonality and the effects of immunization. Proc Natl Acad Sci 113: 6689–6694. (Link)
S. Shrestha, B. Foxman, J. Berus, W. G. van Panhuis, C. Steiner, C. Viboud, and P. Rohani (2015). The role of influenza in the epidemiology of pneumonia. Sci Rep 5: 1–13. (Link)
E. O. Romero-Severson, E. Volz, J. S. Koopman, T. Leitner, and E. L. Ionides (2015). Dynamic variation in sexual contact rates in a cohort of HIV-negative gay men. Am J Epidemiol 182: 255–262. (Link)
M. Martinez-Bakker, A. A. King, and P. Rohani (2015). Unraveling the transmission ecology of polio. PLoS Biol 13: e1002172. (Link)
K. Laneri, R. E. Paul, A. Tall, J. Faye, F. Diene-Sarr, C. Sokhna, J.-F. Trape, and X. Rodó (2015). Dynamical malaria models reveal how immunity buffers effect of climate variability. Proc Natl Acad Sci 112: 8786–8791. (Link)
A. A. King, M. Domenech de Cellès, F. M. G. Magpantay, and P. Rohani (2015). Avoidable errors in the modelling of outbreaks of emerging pathogens, with special reference to Ebola. Proc R Soc Lond B 282: 20150347. (Link)
E. L. Ionides, D. Nguyen, Y. Atchadé, S. Stoev, and A. A. King (2015). Inference for dynamic and latent variable models via iterated, perturbed Bayes maps. Proc Natl Acad Sci 112: 719–724. (Link)
D. T. S. Hayman (2015). Biannual birth pulses allow filoviruses to persist in bat populations. Proc R Soc Lond B 282: 20142591. (Link)
A. Doucet, M. K. Pitt, G. Deligiannidis, and R. Kohn (2015). Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator. Biometrika 102: 295–313. (Link)
C. Bretó (2014). On idiosyncratic stochasticity of financial leverage effects. Statist Probab Lett 91: 20–26. (Link)
I. M. Blake, R. Martin, A. Goel, N. Khetsuriani, J. Everts, C. Wolff, S. Wassilak, R. B. Aylward, and N. C. Grassly (2014). The role of older children and adults in wild poliovirus transmission. Proc Natl Acad Sci 111: 10604–10609. (Link)
S. Shrestha, B. Foxman, D. M. Weinberger, C. Steiner, C. Viboud, and P. Rohani (2013). Identifying the interaction between influenza and pneumococcal pneumonia using incidence data. Sci Transl Med 5: 191ra84. (Link)
J. S. Lavine, A. A. King, V. Andreasen, and O. N. Bjørnstad (2013). Immune boosting explains regime-shifts in prevaccine-era pertussis dynamics. PLoS ONE 8: e72086. (Link)
D. He, J. Dushoff, T. Day, J. Ma, and D. J. D. Earn (2013). Inferring the causes of the three waves of the 1918 influenza pandemic in England and Wales. Proc R Soc Lond B 280: 20131345. (Link)
D. He, J. Dushoff, R. Eftimie, and D. J. D. Earn (2013). Patterns of spread of influenza A in Canada. Proc R Soc Lond B 280: 20131174. (Link)
J. C. Blackwood, D. G. Streicker, S. Altizer, and P. Rohani (2013). Resolving the roles of immunity, pathogenesis, and immigration for rabies persistence in vampire bats. Proc Natl Acad Sci 110: 20837–20842. (Link)
J. C. Blackwood, D. A. T. Cummings, H. Broutin, S. Iamsirithaworn, and P. Rohani (2013). Deciphering the impacts of vaccination and immunity on pertussis epidemiology in Thailand. Proc Natl Acad Sci 110: 9595–9600. (Link)
M. Roy, M. J. Bouma, E. L. Ionides, R. C. Dhiman, and M. Pascual (2012). The potential elimination of Plasmodium vivax malaria by relapse treatment: insights from a transmission model and surveillance data from NW India. PLoS Negl Trop Dis 7: e1979. (Link)
J.-M. Marin, P. Pudlo, C. P. Robert, and R. J. Ryder (2012). Approximate Bayesian computational methods. Stat Comput 22: 1167–1180. (Link)
J. Knape and P. de Valpine (2012). Fitting complex population models by combining particle filters with Markov chain Monte Carlo. Ecology 93: 256–263. (Link)
Y. Xia and H. Tong (2011). Feature matching in time series modeling. Statist Sci 26: 21–46. (Link)
S. Shrestha, A. A. King, and P. Rohani (2011). Statistical inference for multi-pathogen systems. PLoS Comput Biol 7: e1002135. (Link)
E. L. Ionides (2011). Discussion of “Feature Matching in Time Series Modeling” by Y. Xia and H. Tong. Statist Sci 26: 49–52. (Link)
E. L. Ionides, A. Bhadra, Y. Atchadé, and A. A. King (2011). Iterated filtering. Ann Stat 39: 1776–1802. (Link)
D. He, J. Dushoff, T. Day, J. Ma, and D. Earn (2011). Mechanistic modelling of the three waves of the 1918 influenza pandemic. Theor Ecol 4: 1–6. (Link)
A. Camacho, S. Ballesteros, A. L. Graham, F. Carrat, O. Ratmann, and B. Cazelles (2011). Explaining rapid reinfections in multiple-wave influenza outbreaks: Tristan da Cunha 1971 epidemic as a case study. Proc R Soc Lond B 278: 3635–3643. (Link)
C. Bretó and E. L. Ionides (2011). Compound Markov counting processes and their applications to modeling infinitesimally over-dispersed systems. Stochastic Process Appl 121: 2571–2591. (Link)
A. Bhadra, E. L. Ionides, K. Laneri, M. Pascual, M. Bouma, and R. C. Dhiman (2011). Malaria in northwest India: data analysis via partially observed stochastic differential equation models driven by Lévy noise. J Am Stat Assoc 106: 440–451. (Link)
S. N. Wood (2010). Statistical inference for noisy nonlinear ecological dynamic systems. Nature 466: 1102–1104. (Link)
T. Toni and M. P. H. Stumpf (2010). Simulation-based model selection for dynamical systems in systems and population biology. Bioinformatics 26: 104–110. (Link)
K. Laneri, A. Bhadra, E. L. Ionides, M. Bouma, R. C. Dhiman, R. S. Yadav, and M. Pascual (2010). Forcing versus feedback: epidemic malaria and monsoon rains in northwest India. PLoS Comput Biol 6: e1000898. (Link)
D. He, E. L. Ionides, and A. A. King (2010). Plug-and-play inference for disease dynamics: measles in large and small populations as a case study. J R Soc Interface 7: 271–283. (Link)
A. Bhadra (2010). Discussion of ‘Particle Markov chain Monte Carlo methods’ by C. Andrieu, A. Doucet and R. Holenstein. J R Stat Soc B 72: 314–315. (Link)
C. Andrieu, A. Doucet, and R. Holenstein (2010). Particle Markov chain Monte Carlo methods. J R Stat Soc B 72: 269–342. (Link)
T. Toni, D. Welch, N. Strelkowa, A. Ipsen, and M. P. H. Stumpf (2009). Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J R Soc Interface 6: 187–202. (Link)
G. O. Roberts and J. S. Rosenthal (2009). Examples of adaptive MCMC. J Comput Graph Statist 18: 349–367. (Link)
G. Evensen (2009). Data Assimilation: The Ensemble Kalman Filter. Springer, Dordrecht New York. (Link)
C. Bretó, D. He, E. L. Ionides, and A. A. King (2009). Time series analysis via mechanistic models. Ann Appl Stat 3: 319–348. (Link)
C. Andrieu and G. O. Roberts (2009). The pseudo-marginal approach for efficient Monte Carlo computations. Ann Stat 37: 697–725. (Link)
D. C. Reuman, R. F. Costantino, R. A. Desharnais, and J. E. Cohen (2008). Colour of environmental noise affects the nonlinear dynamics of cycling, stage-structured populations. Ecol Lett. (Link)
A. A. King, E. L. Ionides, M. Pascual, and M. J. Bouma (2008). Inapparent infections and cholera dynamics. Nature 454: 877–880. (Link)
X. Cai and Z. Xu (2007). K-leap method for accelerating stochastic simulation of coupled chemical reactions. J Chem Phys 126: 074102. (Link)
D. C. Reuman, R. A. Desharnais, R. F. Costantino, O. S. Ahmad, and J. E. Cohen (2006). Power spectra reveal the influence of stochasticity on nonlinear population dynamics. Proc Natl Acad Sci 103: 18860–18865. (Link)
E. L. Ionides, C. Bretó, and A. A. King (2006). Inference for nonlinear dynamical systems. Proc Natl Acad Sci 103: 18438–18443. (Link)
S. Kucherenko and Y. Sytsko (2005). Application of deterministic low-discrepancy sequences in global optimization. Comput Optim Appl 30: 297–318. (Link)
B. E. Kendall, S. P. Ellner, E. McCauley, S. N. Wood, C. J. Briggs, W. W. Murdoch, and P. Turchin (2005). Population cycles in the pine looper moth: Dynamical tests of mechanistic hypotheses. Ecol Monogr 75: 259–276. (Link)
M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp (2002). A tutorial on particle filters for online nonlinear, non-Gaussian Bayesian tracking. IEEE Trans Signal Process 50: 174–188. (Link)
J. Liu and M. West (2001). Combining parameter and state estimation in simulation-based filtering. In: Sequential Monte Carlo Methods in Practice (edited by A. Doucet, N. de Freitas, and N. J. Gordon) Springer, New York. (Link)
J. L. Anderson (2001). An ensemble adjustment Kalman filter for data assimilation. Mon Wea Rev 129: 2884–2903. (Link)
B. E. Kendall, C. J. Briggs, W. W. Murdoch, P. Turchin, S. P. Ellner, E. McCauley, R. M. Nisbet, and S. N. Wood (1999). Why do populations cycle? A synthesis of statistical and mechanistic modeling approaches. Ecology 80: 1789–1805. (Link)
S. P. Ellner, B. A. Bailey, G. V. Bobashev, A. R. Gallant, B. T. Grenfell, and D. W. Nychka (1998). Noise and nonlinearity in measles epidemics: Combining mechanistic and statistical approaches to population modeling. Am Nat 151: 425–440. (Link)
C. Gouriéroux and A. Monfort (1997). Simulation-based Econometric Methods. Oxford University Press, Oxford. (Link)
G. Evensen (1994). Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res Oceans 99: 10143–10162. (Link)
R. H. McCleery and C. M. Perrins (1991). Effects of predation on the numbers of great tits Parus major. In: Bird population studies. Relevence to Conservation and Management Oxford University Press, Oxford. (Link)
D. R. Brillinger, J. Guckenheimer, P. Guttorp, and G. Oster (1980). Empirical modelling of population time series: the case of age and density dependent rates. In: Some Mathematical Questions in Biology (edited by G. Oster) American Mathematical Society, Providence.
Anonymous (1978). Influenza in a boarding school. Br Med J 1: 587.
D. T. Gillespie (1977). Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81: 2340–2361. (Link)
W. P. London and J. A. Yorke (1973). Recurrent Outbreaks of Measles, Chickenpox and Mumps: I. Seasonal Variation in Contact Rates. Am J Epidemiol 98: 453–468. (Link)
A. J. Nicholson (1957). The self-adjustment of populations to change. Cold Spring Harb Symp Quant Biol 22: 153–173. (Link)


This software has been made possible by support from the U.S. National Science Foundation (Grants #EF-0545276, #EF-0430120), by the “Inference for Mechanistic Models” Working Group supported by the National Center for Ecological Analysis and Synthesis (a Center funded by N.S.F. (Grant #DEB-0553768), the University of California, Santa Barbara, and the State of California), and by the RAPIDD program of the Science & Technology Directorate, Department of Homeland Security and the Fogarty International Center, U.S. National Institutes of Health.