Bibliography

 
L. Wen, Y. Yin, Q. Li, Z. Peng, and D. He (2024). Modeling the co-circulation of influenza and COVID-19 in Hong Kong, China. Advances in Continuous and Discrete Models 2024:. (Link)
 
K. Tan, G. Hooker, and E. L. Ionides (2024). Accelerated inference for partially observed Markov processes using automatic differentiation. arXiv 2407.03085. (Link)
 
M. A. E. Peters, A. A. King, and N. Wale (2024). Red blood cell dynamics during malaria infection challenge the assumptions of mathematical models of infection dynamics. Frontiers in Malaria 2:. (Link)
 
S. S. Musa, S. Zhao, W. Mkandawire, A. Colubri, and D. He (2024). An epidemiological modeling investigation of the long-term changing dynamics of the plague epidemics in Hong Kong. Mathematical Biosciences and Engineering. MBE 21: 7435–7453. (Link)
 
S. Moore, S. Cavany, T. A. Perkins, and G. F. C. España (2024). Projecting the future impact of emerging SARS-CoV-2 variants under uncertainty: Modeling the initial Omicron outbreak. Epidemics 47: 100759. (Link)
 
M. S. Mietchen, E. Clancey, C. McMichael, and E. T. Lofgren (2024). Estimating SARS-CoV-2 transmission parameters between coinciding outbreaks in a university population and the surrounding community. medRxiv 2024.01.10.24301116. (Link)
 
J. Li, E. L. Ionides, A. A. King, M. Pascual, and N. Ning (2024). Inference on spatiotemporal dynamics for coupled biological populations. Journal of the Royal Society Interface 21: 20240217. (Link)
 
A. A. King, Q. Lin, and E. L. Ionides (2024). Exact phylodynamic likelihood via structured Markov genealogy processes. arXiv 2405.17032. (Link)
 
D. He, Y. Artzy-Randrup, S. S. Musa, T. Gräf, F. Naveca, and L. Stone (2024). Modelling the unexpected dynamics of COVID-19 in Manaus, Brazil. Infectious Disease Modelling 9: 557–568. (Link)
 
K. Eslami and H. Lee (2024). Overreaction and the value of information in a pandemic. European economic review 161: 104624. (Link)
 
M. Domenech de Cellès and P. Rohani (2024). Pertussis vaccines, epidemiology and evolution. Nature Reviews Microbiology. (Link)
 
L. E. Coffeng, S. J. de Vlas, R. P. Singh, A. James, J. Bindroo, N. K. Sharma, A. Ali, C. Singh, S. Sharma, and M. Coleman (2024). Effect of indoor residual spraying on sandfly abundance and incidence of visceral leishmaniasis in India, 2016–22: an interrupted time-series analysis and modelling study. Lancet Infectious Diseases 24: 1266–1274. (Link)
 
C. Byrne and J. T. Schiffer (2024). Ensemble modeling of SARS-CoV-2 immune dynamics in immunologically naïve rhesus macaques predicts that potent, early innate immune responses drive viral elimination. Frontiers in Immunology 15:. (Link)
 
C. Byrne, A. C. Márquez, B. Cai, D. Coombs, and S. Gantt (2024). Spatial kinetics and immune control of murine cytomegalovirus infection in the salivary glands. bioRxiv 2024.02.22.581694. (Link)
 
M. Briga, E. Goult, T. S. Brett, P. Rohani, and M. Domenech de Cellès (2024). Maternal pertussis immunization and the blunting of routine vaccine effectiveness: a meta-analysis and modeling study. Nature Communications 15:. (Link)
 
A. Andronico, J. Paireau, and S. Cauchemez (2024). Integrating information from historical data into mechanistic models for influenza forecasting. PLOS Computational Biology 20: e1012523. (Link)
 
D. Wu, H. Petousis-Harris, J. Paynter, V. Suresh, and O. J. Maclaren (2023). Likelihood-based estimation and prediction for a measles outbreak in Samoa. Infectious Disease Modelling 8: 212–227. (Link)
 
J. Wheeler, A. Rosengart, Z. Jiang, K. Tan, N. Treutle, and E. Ionides (2023). Informing policy via dynamic models: cholera in Haiti. arXiv 2301.08979. (Link)
 
C. Trevisin, E. Bertuzzo, D. Pasetto, L. Mari, S. Miccoli, R. Casagrandi, M. Gatto, and A. Rinaldo (2023). Spatially explicit effective reproduction numbers from incidence and mobility data. Proceedings of the National Academy of Sciences 120:. (Link)
 
P. Szczepocki (2023). Estimation of the Cholesky multivariate stochastic volatility model using iterated filtering. Econometrics 27: 44–58. (Link)
 
N. A. Molodecky, H. Jafari, R. M. Safdar, J. A. Ahmed, A. Mahamud, A. S. Bandyopadhyay, H. Shukla, A. Quddus, M. Zaffran, R. W. Sutter, N. C. Grassly, and I. M. Blake (2023). Modelling the spread of serotype-2 vaccine derived-poliovirus outbreak in Pakistan and Afghanistan to inform outbreak control strategies in the context of the COVID-19 pandemic. Vaccine 41: A93–A104. (Link)
 
F. M. G. Magpantay, J. Mao, S. Ren, S. Zhao, and T. Meadows (2023). The reinfection threshold, revisited. Mathematical Biosciences 363: 109045. (Link)
 
E. L. Ionides, K. Asfaw, J. Park, and A. A. King (2023). Bagged filters for partially observed interacting systems. Journal of the American Statistical Association 118: 1078–1089. (Link)
 
D. He, L. Lin, Y. Artzy-Randrup, H. Demirhan, B. J. Cowling, and L. Stone (2023). Resolving the enigma of Iquitos and Manaus: A modeling analysis of multiple COVID-19 epidemic waves in two Amazonian cities. Proceedings of the National Academy of Sciences 120: e2211422120. (Link)
 
L. A. B. Guevara, E. Goult, D. Rodriguez, L. J. Hernandez, B. Kaufer, T. Kurth, and M. Domenech de Cellès (2023). Delineating the seasonality of varicella and its association with climate in the tropical country of Colombia. Journal of Infectious Diseases jiad244. (Link)
 
M. E. Griffiths, D. K. Meza, D. T. Haydon, and D. G. Streicker (2023). Inferring the disruption of rabies circulation in vampire bat populations using a betaherpesvirus-vectored transmissible vaccine. Proceedings of the National Academy of Sciences 120: e2216667120. (Link)
 
D. V. Gokhale, T. S. Brett, B. He, A. A. King, and P. Rohani (2023). Disentangling the causes of mumps reemergence in the United States. Proceedings of the National Academy of Sciences 120: e2207595120. (Link)
 
J. M. Drake, A. Handel, É. Marty, E. B. O'Dea, T. O'Sullivan, G. Righi, and A. T. Tredennick (2023). A data-driven semi-parametric model of SARS-CoV-2 transmission in the United States. PLOS Computational Biology 19: e1011610. (Link)
 
B. de Courson, V. Thouzeau, and N. Baumard (2023). Quantifying the scientific revolution. Evolutionary Human Sciences 5: E19. (Link)
 
T. S. Brett, S. Bansal, and P. Rohani (2023). Charting the spatial dynamics of early SARS-CoV-2 transmission in Washington state. PLOS Computational Biology 19: e1011263. (Link)
 
C. Breto, E. L. Ionides, A. A. King, and J. Wheeler (2023). panelPomp: Inference for Panel Partially Observed Markov Processes. CRAN: Contributed Packages. (Link)
 
O. N. Bjørnstad (2023). Epidemics. Springer. (Link)
 
A. Beloconi, B. O. Nyawanda, G. Bigogo, S. Khagayi, D. Obor, I. Danquah, S. Kariuki, S. Munga, and P. Vounatsou (2023). Malaria, climate variability, and interventions: modelling transmission dynamics. Scientific Reports 13: 7367. (Link)
 
R. A. Aogo, J. V. Zambrana, N. Sanchez, S. Ojeda, G. Kuan, A. Balmaseda, A. Gordon, E. Harris, and L. C. Katzelnick (2023). Effects of boosting and waning in highly exposed populations on dengue epidemic dynamics. Science Translational Medicine 15:. (Link)
 
B. Zhang, W. Huang, S. Pei, J. Zeng, W. Shen, D. Wang, G. Wang, T. Chen, L. Yang, P. Cheng, D. Wang, Y. Shu, and X. Du (2022). Mechanisms for the circulation of influenza A(H3N2) in China: a spatiotemporal modelling study. PLOS Pathogens 18: e1011046. (Link)
 
Y. Yu, Y. Liu, S. Zhao, and D. He (2022). A simple model to estimate the transmissibility of the Beta, Delta, and Omicron variants of SARS-COV-2 in South Africa. Mathematical Biosciences and Engineering. MBE 19: 10361–10373. (Link)
 
H. Williams, A. Scharf, A. R. Ryba, D. R. Norris, D. J. Mennill, A. E. M. Newman, S. M. Doucet, and J. C. Blackwood (2022). Cumulative cultural evolution and mechanisms for cultural selection in wild bird songs. Nature Communications 13: 4001. (Link)
 
A. T. Tredennick, E. B. O'Dea, M. J. Ferrari, A. W. Park, P. Rohani, and J. M. Drake (2022). Anticipating infectious disease re-emergence and elimination: a test of early warning signals using empirically based models. Journal of the Royal Society, Interface 19: 20220123. (Link)
 
G. Shirreff, J.-R. Zahar, S. Cauchemez, L. Temime, and L. Opatowski (2022). Measuring basic reproduction number to assess effects of nonpharmaceutical interventions on nosocomial SARS-CoV-2 transmission. Emerging Infectious Diseases 28: 1345–1354. (Link)
 
M. Shah, G. Ferra, S. Fitzgerald, P. J. Barreira, P. C. Sabeti, and A. Colubri (2022). Containing the spread of mumps on college campuses. Royal Society Open Science 9: 210948. (Link)
 
L. Sartori, M. Pereira, and S. Oliva (2022). Time-scale analysis and parameter fitting for vector-borne diseases with spatial dynamics. Bulletin of Mathematical Biology 84: 124. (Link)
 
M. Santos-Vega, P. P. Martinez, K. G. Vaishnav, V. Kohli, V. Desai, M. J. Bouma, and M. Pascual (2022). The neglected role of relative humidity in the interannual variability of urban malaria in Indian cities. Nature Communications 13: 533. (Link)
 
D. Pak, S. Carran, D. Biddinger, B. Nelson, and O. N. Bjørnstad (2022). Incorporating diapause to predict the interannual dynamics of an important agricultural pest. Population Ecology 64: 267–279. (Link)
 
K. Newman, R. King, V. Elvira, P. Valpine, R. S. McCrea, and B. J. T. Morgan (2022). State-space models for ecological time-series data: Practical model-fitting. Methods in Ecology and Evolution 14: 26–42. (Link)
 
Y. Liu, Y. Yu, Y. Zhao, and D. He (2022). Reduction in the infection fatality rate of omicron variant compared with previous variants in South Africa. International Journal of Infectious Diseases 120: 146–149. (Link)
 
A. A. King, Q. Lin, and E. L. Ionides (2022). Markov genealogy processes. Theoretical Population Biology 143: 77–91. (Link)
 
S. J. Fox, M. Lachmann, M. Tec, R. Pasco, S. Woody, Z. Du, X. Wang, T. A. Ingle, E. Javan, M. Dahan, K. Gaither, M. E. Escott, S. I. Adler, S. C. Johnston, J. G. Scott, and L. A. Meyers (2022). Real-time pandemic surveillance using hospital admissions and mobility data. Proceedings of the National Academy of Sciences 119: e2111870119. (Link)
 
J. E. Domeyer, J. D. Lee, H. Toyoda, B. Mehler, and B. Reimer (2022). Driver-pedestrian perceptual models demonstrate coupling: implications for vehicle automation. IEEE Transactions on Human-Machine Systems 52: 1–10. (Link)
 
M. Domenech de Cellès, E. Goult, J.-S. Casalegno, and S. C. Kramer (2022). The pitfalls of inferring virus-virus interactions from co-detection prevalence data: application to influenza and SARS-CoV-2. Proceedings of the Royal Society of London. Series B 289: 20212358. (Link)
 
M. Domenech de Cellès, A. Wong, L. A. B. Guevara, and P. Rohani (2022). Immunological heterogeneity informs estimation of the durability of vaccine protection. Journal of the Royal Society, Interface 19: 20220070. (Link)
 
F. Dablander, H. Heesterbeek, D. Borsboom, and J. M. Drake (2022). Overlapping timescales obscure early warning signals of the second COVID-19 wave. Proceedings of the Royal Society of London. Series B 289: 20211809. (Link)
 
J. W. Cabore, H. C. Karamagi, H. K. Kipruto, J. K. Mungatu, J. A. Asamani, B. Droti, R. Titi-ofei, A. B. W. Seydi, S. N. Kidane, T. Balde, A. S. Gueye, L. Makubalo, and M. R. Moeti (2022). COVID-19 in the 47 countries of the WHO African region: a modelling analysis of past trends and future patterns. Lancet Global Health 10: e1099–e1114. (Link)
 
C. Bravo-Vega, M. Santos-Vega, and J. M. Cordovez (2022). Disentangling snakebite dynamics in Colombia: How does rainfall and temperature drive snakebite temporal patterns?. PLOS Neglected Tropical Diseases 16: e0010270. (Link)
 
S. Boonpatcharanon, J. M. Heffernan, and H. Jankowski (2022). Estimating the basic reproduction number at the beginning of an outbreak. PLOS ONE 17: e0269306. (Link)
 
K. M. Bakker, M. C. Eisenberg, R. J. Woods, and M. E. Martinez (2022). Identifying optimal vaccination scenarios to reduce Varicella zoster virus transmission and reactivation. BMC Medicine 20:. (Link)
 
J. Andrade and J. Duggan (2022). Inferring the effective reproductive number from deterministic and semi-deterministic compartmental models using incidence and mobility data. PLOS Computational Biology 18: e1010206. (Link)
 
B. Zhang, S. Liang, G. Wang, C. Zhang, C. Chen, M. Zou, W. Shen, H. Long, D. He, Y. Shu, and X. Du (2021). Synchronized nonpharmaceutical interventions for the control of COVID-19. Nonlinear Dynamics, Psychology, and Life Sciences 106: 1477–1489. (Link)
 
W. Yang, D. Zhang, L. Peng, C. Zhuge, and L. Hong (2021). Rational evaluation of various epidemic models based on the COVID-19 data of China. Epidemics 37: 100501. (Link)
 
X. Wang, Z. Du, K. Johnson, R. Pasco, S. Fox, M. Lachmann, J. McLellan, and L. A. Meyers (2021). Effects of COVID-19 vaccination timing and risk prioritization on mortality rates, United States. Emerging Infectious Diseases 27: 1976. (Link)
 
R. Subramanian, Q. He, and M. Pascual (2021). Quantifying asymptomatic infection and transmission of COVID-19 in New York City using observed cases, serology, and testing capacity. Proceedings of the National Academy of Sciences 118: e2019716118. (Link)
 
X. Rodo, P. P. Martinez, A. Siraj, and M. Pascual (2021). Malaria trends in Ethiopian highlands track the 2000 ‘slowdown’ in global warming. Nature Communications 12: 1555. (Link)
 
D. Pasetto, J. C. Lemaitre, E. Bertuzzo, M. Gatto, and A. Rinaldo (2021). Range of reproduction number estimates for COVID-19 spread. Biochemical and Biophysical Research Communications 538: 253–258. (Link)
 
S. W. Park, M. Pons-Salort, K. Messacar, C. Cook, L. Meyers, J. Farrar, and B. T. Grenfell (2021). Epidemiological dynamics of enterovirus D68 in the United States and implications for acute flaccid myelitis. Science Translational Medicine 13: eabd2400. (Link)
 
M. P. Kain, M. L. Childs, A. D. Becker, and E. A. Mordecai (2021). Chopping the tail: How preventing superspreading can help to maintain COVID-19 control. Epidemics 34: 100430. (Link)
 
T. Ganyani, C. Faes, and N. Hens (2021). Simulation and analysis methods for stochastic compartmental epidemic models. Annual Review of Statistics and its Application 8: 69–88. (Link)
 
M. L. Childs, M. P. Kain, M. J. Harris, D. Kirk, L. Couper, N. Nova, I. Delwel, J. Ritchie, A. D. Becker, and E. A. Mordecai (2021). The impact of long-term non-pharmaceutical interventions on COVID-19 epidemic dynamics and control: the value and limitations of early models. Proceedings of the Royal Society of London. Series B 288: 20210811. (Link)
 
Y. Cai, S. Zhao, Y. Niu, Z. Peng, K. Wang, D. He, and W. Wang (2021). Modelling the effects of the contaminated environments on tuberculosis in Jiangsu, China. Journal of Theoretical Biology 508: 110453. (Link)
 
R. K. Borchering, C. E. Gunning, D. V. Gokhale, K. B. Weedop, A. Saeidpour, T. S. Brett, and P. Rohani (2021). Anomalous influenza seasonality in the United States and the emergence of novel influenza B viruses. Proceedings of the National Academy of Sciences 118: e2012327118. (Link)
 
A. D. Becker, K. H. Grantz, S. T. Hegde, S. Bérubé, D. A. T. Cummings, and A. Wesolowski (2021). Development and dissemination of infectious disease dynamic transmission models during the COVID-19 pandemic: what can we learn from other pathogens and how can we move forward?. Lancet Digital Health 3: e41–e50. (Link)
 
M. Auger-Méthé, K. Newman, D. Cole, F. Empacher, R. Gryba, A. A. King, V. Leos-Barajas, J. Mills Flemming, A. Nielsen, G. Petris, and L. Thomas (2021). A guide to state-space modeling of ecological time series. Ecological Monographs 91: e01470. (Link)
 
K. Asfaw, J. Park, A. Ho, A. A. King, and E. L. Ionides (2021). Statistical inference for spatiotemporal partially observed Markov processes via the R package spatPomp. arXiv 2101.01157. (Link)
 
K. Asfaw, E. Ionides, and A. A. King (2021). spatPomp: inference for spatiotemporal partially observed Markov processes. CRAN: Contributed Packages. (Link)
 
L. K. Whittles, P. J. White, and X. Didelot (2020). Assessment of the potential of vaccination to combat antibiotic resistance in gonorrhea: a modeling analysis to determine preferred product characteristics. Clinical Infectious Diseases. (Link)
 
P. Szczepocki (2020). Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process. Statistics in Transition New Series 21: 173–187. (Link)
 
L. Stone, D. H. He, S. Lehnstaedt, and Y. Artzy-Randrup (2020). Extraordinary curtailment of massive typhus epidemic in the Warsaw Ghetto. Science Advances 6: eabc0927. (Link)
 
T. Stocks, L. J. Martin, S. Kühlmann-Berenzon, and T. Britton (2020). Dynamic modeling of hepatitis C transmission among people who inject drugs. Epidemics 30: 100378. (Link)
 
J. Park and E. L. Ionides (2020). Inference on high-dimensional implicit dynamic models using a guided intermediate resampling filter. Statistics and Computing 30: 1497–1522. (Link)
 
S. S. Musa, S. Zhao, D. Gao, Q. Lin, G. Chowell, and D. He (2020). Mechanistic modelling of the large-scale Lassa fever epidemics in Nigeria from 2016 to 2019. Journal of Theoretical Biology 493: 110209. (Link)
 
E. C. Lee, D. L. Chao, J. C. Lemaitre, L. Matrajt, D. Pasetto, J. Perez-Saez, F. Finger, A. Rinaldo, J. D. Sugimoto, M. E. Halloran, I. M. Longini, R. Ternier, K. Vissieres, A. S. Azman, J. Lessler, and L. C. Ivers (2020). Achieving coordinated national immunity and cholera elimination in Haiti through vaccination: a modelling study. Lancet Global Health 8: e1081–e1089. (Link)
 
D. He, S. Zhao, Q. Lin, S. S. Musa, and L. Stone (2020). New estimates of the Zika virus epidemic attack rate in northeastern Brazil from 2015 to 2016: a modelling analysis based on Guillain-Barré syndrome (gbs) surveillance data. PLOS Neglected Tropical Diseases 14: e0007502. (Link)
 
S. Funk and A. A. King (2020). Choices and trade-offs in inference with infectious disease models. Epidemics 30: 100383. (Link)
 
M. Domenech de Cellès, H. Campbell, R. Borrow, M.-K. Taha, and L. Opatowski (2020). Transmissibility and pathogenicity of the emerging meningococcal serogroup W sequence type-11 complex South American strain: a mathematical modeling study. BMC Medicine 18: 1–12. (Link)
 
G. G. Cotterill, P. C. Cross, J. A. Merkle, J. D. Rogerson, B. M. Scurlock, and J. T. du Toit (2020). Parsing the effects of demography, climate and management on recurrent brucellosis outbreaks in elk. Journal of Applied Ecology 57: 379–389. (Link)
 
A. Colubri, M. Kemball, K. Sani, C. Boehm, K. Mutch-Jones, B. Fry, T. Brown, and P. C. Sabeti (2020). Preventing outbreaks through interactive, experiential real-life simulations. Cell 182: 1366–1371. (Link)
 
Q. Clairon and A. Samson (2020). Optimal control for estimation in partially observed elliptic and hypoelliptic linear stochastic differential equations. Statistical Inference for Stochastic Processes 23: 105–127. (Link)
 
A. D. Becker, S. H. Zhou, A. Wesolowski, and B. T. Grenfell (2020). Coexisting attractors in the context of cross-scale population dynamics: measles in London as a case study. Proceedings of the Royal Society of London. Series B 287: 20191510. (Link)
 
N. Wale, M. J. Jones, D. G. Sim, A. F. Read, and A. A. King (2019). The contribution of host cell-directed vs. parasite-directed immunity to the disease and dynamics of malaria infections. Proceedings of the National Academy of Sciences 201908147. (Link)
 
T. Stocks (2019). Iterated filtering methods for Markov process epidemic models. In: Handbook of Infectious Disease Data Analysis (edited by L. Held, N. Hens, P. O’Neill, and J. Wallinga) Chapman and Hall/CRC, New York. (Link)
 
E. B. O'Dea and J. M. Drake (2019). Disentangling reporting and disease transmission. Theoretical Ecology 12: 89–98. (Link)
 
N. Noori and P. Rohani (2019). Quantifying the consequences of measles-induced immune modulation for whooping cough epidemiology. Philos Trans R Soc London B 374: 20180270. (Link)
 
J. A. Marino Jr., S. D. Peacor, D. B. Bunnell, H. A. Vanderploeg, S. A. Pothoven, A. K. Elgin, J. R. Bence, J. Jiao, and E. L. Ionides (2019). Evaluating consumptive and nonconsumptive predator effects on prey density using field time-series data. Ecology 100: e02583. (Link)
 
F. M. G. Magpantay, A. King A., and P. Rohani (2019). Age-structure and transient dynamics in epidemiological systems. Journal of the Royal Society, Interface 16: 20190151. (Link)
 
J. Lemaitre, D. Pasetto, J. Perez-Saez, C. Sciarra, J. F. Wamala, and A. Rinaldo (2019). Rainfall as a driver of epidemic cholera: Comparative model assessments of the effect of intra-seasonal precipitation events. Acta Tropica 190: 235–243. (Link)
 
M. Domenech de Cellès, H. Arduin, D. Lévy-Bruhl, S. Georges, C. Souty, D. Guillemot, L. Watier, and L. Opatowski (2019). Unraveling the seasonal epidemiology of pneumococcus. Proceedings of the National Academy of Sciences 116: 1802. (Link)
 
L. E. Coffeng, E. A. Le Rutte, J. Muñoz, E. R. Adams, J. M. Prada, S. J. de Vlas, and G. F. Medley (2019). Impact of changes in detection effort on control of visceral leishmaniasis in the Indian subcontinent. Journal of Infectious Diseases 221: S546–S553. (Link)
 
C. Bretó, E. L. Ionides, and A. A. King (2019). Panel data analysis via mechanistic models. Journal of the American Statistical Association 115: 1178–1188. (Link)
 
O. N. Bjornstad (2019). Population dynamics of pathogens. In: Handbook of Infectious Disease Data Analysis (edited by L. Held, N. Hens, P. O’Neill, and J. Wallinga) Chapman and Hall/CRC, New York. (Link)
 
A. D. Becker, A. Wesolowski, O. N. Bjornstad, and B. T. Grenfell (2019). Long-term dynamics of measles in London: Titrating the impact of wars, the 1918 pandemic, and vaccination. PLOS Computational Biology 15: e1007305. (Link)
 
S. Zhao, L. Stone, D. Gao, and D. He (2018). Modelling the large-scale yellow fever outbreak in Luanda, Angola, and the impact of vaccination. PLOS Neglected Tropical Diseases 12: e0006158. (Link)
 
T. Stocks, T. Britton, and M. Höhle (2018). Model selection and parameter estimation for dynamic epidemic models via iterated filtering: application to rotavirus in Germany. Biostatistics 400–416. (Link)
 
E. O. Romero-Severson, R. M. Ribeiro, and M. Castro (2018). Noise is not error: detecting parametric heterogeneity between epidemiologic time series. Frontiers in Microbiology 9: 1529. (Link)
 
M. Pons-Salort and N. C. Grassly (2018). Serotype-specific immunity explains the incidence of diseases caused by human enteroviruses. Science 361: 800. (Link)
 
Q. Lin, A. P. Chiu, S. Zhao, and D. He (2018). Modeling the spread of Middle East respiratory syndrome coronavirus in Saudi Arabia. Statistical Methods in Medical Research 27: 1968–1978. (Link)
 
D. A. Kennedy, P. A. Dunn, and A. F. Read (2018). Modeling Marek’s disease virus transmission: A framework for evaluating the impact of farming practices and evolution. Epidemics 23: 85–95. (Link)
 
M. Domenech de Cellès, F. M. G. Magpantay, A. A. King, and P. Rohani (2018). The impact of past vaccination coverage and immunity on pertussis resurgence. Science Translational Medicine 10: eaaj1748. (Link)
 
C. Bretó (2018). Modeling and inference for infectious disease dynamics: a likelihood-based approach. Statistical Science 33: 57–69. (Link)
 
L. K. Whittles, P. J. White, and X. Didelot (2017). Estimating the fitness cost and benefit of cefixime resistance in Neisseria gonorrhoeae to inform prescription policy: a modelling study. PLOS Medicine 14: e1002416. (Link)
 
S. L. Ranjeva, E. B. Baskerville, V. Dukic, L. L. Villa, E. Lazcano-Ponce, A. R. Giuliano, G. Dwyer, and S. Cobey (2017). Recurring infection with ecologically distinct HPV types can explain high prevalence and diversity. Proceedings of the National Academy of Sciences 114: 13573–13578. (Link)
 
P. P. Martinez, R. C. Reiner Jr, M. Roy, B. A. Cash, M. Yunus, A. S. G. Faruque, S. Huq, A. A. King, and M. Pascual (2017). Cholera forecast for Dhaka, Bangladesh, with the 2015–2016 El Niño: lessons learned. PLOS ONE 12: e0172355. (Link)
 
E. L. Ionides, C. Breto, J. Park, R. A. Smith, and A. A. King (2017). Monte Carlo profile confidence intervals for dynamic systems. Journal of the Royal Society, Interface 14: 20170126. (Link)
 
X. Du, A. A. King, R. J. Woods, and M. Pascual (2017). Evolution-informed forecasting of seasonal influenza A (H3N2). Science Translational Medicine 9: eaan5325. (Link)
 
M. G. Buhnerkempe, K. C. Prager, C. C. Strelioff, D. J. Greig, J. L. Laake, S. R. Melin, R. L. DeLong, F. M. D. Gulland, and J. O. Lloyd-Smith (2017). Detecting signals of chronic shedding to explain pathogen persistence: Leptospira interrogans in California sea lions. Journal of Animal Ecology 86: 460–472. (Link)
 
T. Baracchini, A. A. King, M. J. Bouma, X. Rodó, E. Bertuzzo, and M. Pascual (2017). Seasonality in cholera dynamics: a rainfall-driven model explains the wide range of patterns in endemic areas. Advances in Water Resources 108C: 357–366. (Link)
 
S. Tavakoli and V. M. Panaretos (2016). Detecting and localizing differences in functional time series dynamics: a case study in molecular biophysics. Journal of the American Statistical Association 111: 1020–1035. (Link)
 
P. P. Martinez, A. A. King, M. Yunus, A. S. G. Faruque, and M. Pascual (2016). Differential and enhanced response to climate forcing in diarrheal disease due to rotavirus across a megacity of the developing world. Proceedings of the National Academy of Sciences 113: 4092–4097. (Link)
 
F. M. G. Magpantay, M. Domenech de Cellès, P. Rohani, and A. A. King (2016). Pertussis immunity and epidemiology: mode and duration of vaccine-induced immunity. Parasitology 143: 835–849. (Link)
 
Q. Lin, Z. Lin, A. P. Y. Chiu, and D. He (2016). Seasonality of influenza A(H7N9) virus in China–-fitting simple epidemic models to human cases. PLOS ONE 11: e0151333. (Link)
 
A. A. King, D. Nguyen, and E. L. Ionides (2016). Statistical inference for partially observed Markov processes via the R package pomp. Journal of Statistical Software 69: 1–43. (Link)
 
M. Fasiolo, N. Pya, and S. N. Wood (2016). A comparison of inferential methods for highly nonlinear state space models in ecology and epidemiology. Statistical Science. A Review Journal of the Institute of Mathematical Statistics 31: 96–118. (Link)
 
A. Bhadra and E. L. Ionides (2016). Adaptive particle allocation in iterated sequential Monte Carlo via approximating meta-models. Statistics and Computing 26: 393–407. (Link)
 
A. D. Becker, R. B. Birger, A. Teillant, P. A. Gastanaduy, G. S. Wallace, and B. T. Grenfell (2016). Estimating enhanced prevaccination measles transmission hotspots in the context of cross-scale dynamics. Proceedings of the National Academy of Sciences 113: 14595–14600. (Link)
 
D. Barrows (2016). A comparative study of techniques for estimation and inference of nonlinear stochastic time series. Thesis: McMaster University. (Link)
 
K. M. Bakker, M. E. Martinez-Bakker, B. Helm, and T. J. Stevenson (2016). Digital epidemiology reveals global childhood disease seasonality and the effects of immunization. Proceedings of the National Academy of Sciences 113: 6689–6694. (Link)
 
S. Shrestha, B. Foxman, J. Berus, W. G. van Panhuis, C. Steiner, C. Viboud, and P. Rohani (2015). The role of influenza in the epidemiology of pneumonia. Scientific Reports 5: 1–13. (Link)
 
E. O. Romero-Severson, E. Volz, J. S. Koopman, T. Leitner, and E. L. Ionides (2015). Dynamic variation in sexual contact rates in a cohort of HIV-negative gay men. American Journal of Epidemiology 182: 255–262. (Link)
 
M. Martinez-Bakker, A. A. King, and P. Rohani (2015). Unraveling the transmission ecology of polio. PLOS Biology 13: e1002172. (Link)
 
K. Laneri, R. E. Paul, A. Tall, J. Faye, F. Diene-Sarr, C. Sokhna, J.-F. Trape, and X. Rodó (2015). Dynamical malaria models reveal how immunity buffers effect of climate variability. Proceedings of the National Academy of Sciences 112: 8786–8791. (Link)
 
A. A. King, M. Domenech de Cellès, F. M. G. Magpantay, and P. Rohani (2015). Avoidable errors in the modelling of outbreaks of emerging pathogens, with special reference to Ebola. Proceedings of the Royal Society of London. Series B 282: 20150347. (Link)
 
E. L. Ionides, D. Nguyen, Y. Atchadé, S. Stoev, and A. A. King (2015). Inference for dynamic and latent variable models via iterated, perturbed Bayes maps. Proceedings of the National Academy of Sciences 112: 719–724. (Link)
 
D. T. S. Hayman (2015). Biannual birth pulses allow filoviruses to persist in bat populations. Proceedings of the Royal Society of London, Series B 282: 20142591. (Link)
 
A. Doucet, M. K. Pitt, G. Deligiannidis, and R. Kohn (2015). Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator. Biometrika 102: 295–313. (Link)
 
C. Bretó (2014). On idiosyncratic stochasticity of financial leverage effects. Statistics & Probability Letters 91: 20–26. (Link)
 
I. M. Blake, R. Martin, A. Goel, N. Khetsuriani, J. Everts, C. Wolff, S. Wassilak, R. B. Aylward, and N. C. Grassly (2014). The role of older children and adults in wild poliovirus transmission. Proceedings of the National Academy of Sciences 111: 10604–10609. (Link)
 
S. Shrestha, B. Foxman, D. M. Weinberger, C. Steiner, C. Viboud, and P. Rohani (2013). Identifying the interaction between influenza and pneumococcal pneumonia using incidence data. Science Translational Medicine 5: 191ra84. (Link)
 
J. S. Lavine, A. A. King, V. Andreasen, and O. N. Bjørnstad (2013). Immune boosting explains regime-shifts in prevaccine-era pertussis dynamics. PLOS ONE 8: e72086. (Link)
 
D. He, J. Dushoff, T. Day, J. Ma, and D. J. D. Earn (2013). Inferring the causes of the three waves of the 1918 influenza pandemic in England and Wales. Proceedings of the Royal Society of London. Series B 280: 20131345. (Link)
 
D. He, J. Dushoff, R. Eftimie, and D. J. D. Earn (2013). Patterns of spread of influenza A in Canada. Proceedings of the Royal Society of London. Series B 280: 20131174. (Link)
 
J. C. Blackwood, D. G. Streicker, S. Altizer, and P. Rohani (2013). Resolving the roles of immunity, pathogenesis, and immigration for rabies persistence in vampire bats. Proceedings of the National Academy of Sciences 110: 20837–20842. (Link)
 
J. C. Blackwood, D. A. T. Cummings, H. Broutin, S. Iamsirithaworn, and P. Rohani (2013). Deciphering the impacts of vaccination and immunity on pertussis epidemiology in Thailand. Proceedings of the National Academy of Sciences 110: 9595–9600. (Link)
 
M. Roy, M. J. Bouma, E. L. Ionides, R. C. Dhiman, and M. Pascual (2012). The potential elimination of Plasmodium vivax malaria by relapse treatment: insights from a transmission model and surveillance data from NW India. PLOS Neglected Tropical Diseases 7: e1979. (Link)
 
J.-M. Marin, P. Pudlo, C. P. Robert, and R. J. Ryder (2012). Approximate Bayesian computational methods. Statistics and Computing 22: 1167–1180. (Link)
 
J. Knape and P. de Valpine (2012). Fitting complex population models by combining particle filters with Markov chain Monte Carlo. Ecology 93: 256–263. (Link)
 
Y. Xia and H. Tong (2011). Feature matching in time series modeling. Statistical Science. A Review Journal of the Institute of Mathematical Statistics 26: 21–46. (Link)
 
S. Shrestha, A. A. King, and P. Rohani (2011). Statistical inference for multi-pathogen systems. PLOS Computational Biology 7: e1002135. (Link)
 
E. L. Ionides (2011). Discussion of “Feature Matching in Time Series Modeling” by Y. Xia and H. Tong. Statistical Science 26: 49–52. (Link)
 
E. L. Ionides, A. Bhadra, Y. Atchadé, and A. A. King (2011). Iterated filtering. Annals of Statistics 39: 1776–1802. (Link)
 
D. He, J. Dushoff, T. Day, J. Ma, and D. Earn (2011). Mechanistic modelling of the three waves of the 1918 influenza pandemic. Theoretical Ecology 4: 1–6. (Link)
 
A. Camacho, S. Ballesteros, A. L. Graham, F. Carrat, O. Ratmann, and B. Cazelles (2011). Explaining rapid reinfections in multiple-wave influenza outbreaks: Tristan da Cunha 1971 epidemic as a case study. Proceedings of the Royal Society of London. Series B 278: 3635–3643. (Link)
 
C. Bretó and E. L. Ionides (2011). Compound Markov counting processes and their applications to modeling infinitesimally over-dispersed systems. Stochastic Processes and their Applications 121: 2571–2591. (Link)
 
A. Bhadra, E. L. Ionides, K. Laneri, M. Pascual, M. Bouma, and R. C. Dhiman (2011). Malaria in northwest India: data analysis via partially observed stochastic differential equation models driven by Lévy noise. Journal of the American Statistical Association 106: 440–451. (Link)
 
S. N. Wood (2010). Statistical inference for noisy nonlinear ecological dynamic systems. Nature 466: 1102–1104. (Link)
 
T. Toni and M. P. H. Stumpf (2010). Simulation-based model selection for dynamical systems in systems and population biology. Bioinformatics 26: 104–110. (Link)
 
K. Laneri, A. Bhadra, E. L. Ionides, M. Bouma, R. C. Dhiman, R. S. Yadav, and M. Pascual (2010). Forcing versus feedback: epidemic malaria and monsoon rains in northwest India. PLOS Computational Biology 6: e1000898. (Link)
 
D. He, E. L. Ionides, and A. A. King (2010). Plug-and-play inference for disease dynamics: measles in large and small populations as a case study. Journal of the Royal Society, Interface 7: 271–283. (Link)
 
A. Bhadra (2010). Discussion of ‘Particle Markov chain Monte Carlo methods’ by C. Andrieu, A. Doucet and R. Holenstein. Journal of the Royal Statistical Society: Series B 72: 314–315. (Link)
 
C. Andrieu, A. Doucet, and R. Holenstein (2010). Particle Markov chain Monte Carlo methods. Journal of the Royal Statistical Society: Series B 72: 269–342. (Link)
 
T. Toni, D. Welch, N. Strelkowa, A. Ipsen, and M. P. H. Stumpf (2009). Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. Journal of the Royal Society, Interface 6: 187–202. (Link)
 
G. O. Roberts and J. S. Rosenthal (2009). Examples of adaptive MCMC. Journal of Computational and Graphical Statistics 18: 349–367. (Link)
 
G. Evensen (2009). Data Assimilation: The Ensemble Kalman Filter. Springer, Dordrecht New York. (Link)
 
C. Bretó, D. He, E. L. Ionides, and A. A. King (2009). Time series analysis via mechanistic models. Annals of Applied Statistics 3: 319–348. (Link)
 
C. Andrieu and G. O. Roberts (2009). The pseudo-marginal approach for efficient Monte Carlo computations. Annals of Statistics 37: 697–725. (Link)
 
D. C. Reuman, R. F. Costantino, R. A. Desharnais, and J. E. Cohen (2008). Colour of environmental noise affects the nonlinear dynamics of cycling, stage-structured populations. Ecology Letters. (Link)
 
A. A. King, E. L. Ionides, M. Pascual, and M. J. Bouma (2008). Inapparent infections and cholera dynamics. Nature 454: 877–880. (Link)
 
X. Cai and Z. Xu (2007). K-leap method for accelerating stochastic simulation of coupled chemical reactions. Journal of Chemical Physics 126: 074102. (Link)
 
D. C. Reuman, R. A. Desharnais, R. F. Costantino, O. S. Ahmad, and J. E. Cohen (2006). Power spectra reveal the influence of stochasticity on nonlinear population dynamics. Proceedings of the National Academy of Sciences 103: 18860–18865. (Link)
 
E. L. Ionides, C. Bretó, and A. A. King (2006). Inference for nonlinear dynamical systems. Proceedings of the National Academy of Sciences 103: 18438–18443. (Link)
 
S. Kucherenko and Y. Sytsko (2005). Application of deterministic low-discrepancy sequences in global optimization. Computational Optimization and Applications. An International Journal 30: 297–318. (Link)
 
B. E. Kendall, S. P. Ellner, E. McCauley, S. N. Wood, C. J. Briggs, W. W. Murdoch, and P. Turchin (2005). Population cycles in the pine looper moth: Dynamical tests of mechanistic hypotheses. Ecological Monographs 75: 259–276. (Link)
 
M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp (2002). A tutorial on particle filters for online nonlinear, non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing 50: 174–188. (Link)
 
J. Liu and M. West (2001). Combining parameter and state estimation in simulation-based filtering. In: Sequential Monte Carlo Methods in Practice (edited by A. Doucet, N. de Freitas, and N. J. Gordon) Springer, New York. (Link)
 
J. L. Anderson (2001). An ensemble adjustment Kalman filter for data assimilation. Monthly Weather Review 129: 2884–2903. (Link)
 
B. E. Kendall, C. J. Briggs, W. W. Murdoch, P. Turchin, S. P. Ellner, E. McCauley, R. M. Nisbet, and S. N. Wood (1999). Why do populations cycle? A synthesis of statistical and mechanistic modeling approaches. Ecology 80: 1789–1805. (Link)
 
S. P. Ellner, B. A. Bailey, G. V. Bobashev, A. R. Gallant, B. T. Grenfell, and D. W. Nychka (1998). Noise and nonlinearity in measles epidemics: Combining mechanistic and statistical approaches to population modeling. American Naturalist 151: 425–440. (Link)
 
C. Gouriéroux and A. Monfort (1997). Simulation-based Econometric Methods. Oxford University Press, Oxford. (Link)
 
G. Evensen (1994). Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. Journal of Geophysical Research: Oceans 99: 10143–10162. (Link)
 
R. H. McCleery and C. M. Perrins (1991). Effects of predation on the numbers of great tits Parus major. In: Bird population studies. Relevence to Conservation and Management Oxford University Press, Oxford. (Link)
 
D. R. Brillinger, J. Guckenheimer, P. Guttorp, and G. Oster (1980). Empirical modelling of population time series: the case of age and density dependent rates. In: Some Mathematical Questions in Biology (edited by G. Oster) American Mathematical Society, Providence.
 
Anonymous (1978). Influenza in a boarding school. British Medical Journal 1: 587.
 
D. T. Gillespie (1977). Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81: 2340–2361. (Link)
 
W. P. London and J. A. Yorke (1973). Recurrent outbreaks of measles, chickenpox and mumps: I. Seasonal variation in contact rates. American Journal of Epidemiology 98: 453–468. (Link)
 
A. J. Nicholson (1957). The self-adjustment of populations to change. Cold Spring Harbor Symposia on Quantitative Biology 22: 153–173. (Link)

NSF
NCEAS
NIH

This software has been made possible by support from the U.S. National Science Foundation (Grants #EF-0545276, #EF-0430120), by the “Inference for Mechanistic Models” Working Group supported by the National Center for Ecological Analysis and Synthesis (a Center funded by N.S.F. (Grant #DEB-0553768), the University of California, Santa Barbara, and the State of California), and by the RAPIDD program of the Science & Technology Directorate, Department of Homeland Security and the Fogarty International Center, U.S. National Institutes of Health.