Produced with R version 4.3.2 and pomp version 5.6.

Number of particles

Perturbations

Cooling schedule

Parameter transformations

Maximizing the likelihood in stages

General remarks


Exercises

Assessing and improving algorithmic parameters

Develop your own heuristics to try to improve the performance of mif2 in the Consett measles example. Specifically, for a global optimization procedure carried out using random starting values in the specified box, let \(\hat\Theta_{\mathrm{max}}\) be a random Monte Carlo estimate of the resulting MLE, and let \(\hat\theta\) be the true (unknown) MLE. We can define the maximization error in the log likelihood to be \[e = \ell(\hat\theta) - E[\ell(\hat\Theta_{\mathrm{max}})].\] We cannot directly evaluate \(e\), since there is also Monte Carlo error in our evaluation of \(\ell(\theta)\), but we can compute it up to a known precision. Plan some code to estimates \(e\) for a search procedure using a computational effort of \(JM=2\times 10^7\), comparable to that used for each mif computation in the global search. Discuss the strengths and weaknesses of this quantification of optimization success. See if you can choose \(J\) and \(M\) subject to this constraint, together with choices of rw.sd and the cooling rate, cooling.fraction.50, to arrive at a quantifiably better procedure. Computationally, you may not be readily able to run your full procedure, but you could run a quicker version of it.


References


Top of this document
Previous page
Back to the lesson
Course homepage
Acknowledgments
CC-BY_NC

Licensed under the Creative Commons Attribution-NonCommercial license. Please share and remix noncommercially, mentioning its origin.