trajectory {pomp} | R Documentation |
Trajectory of a deterministic model
Description
Compute trajectories of the deterministic skeleton of a Markov process.
Usage
## S4 method for signature 'missing'
trajectory(
...,
t0,
times,
params,
skeleton,
rinit,
ode_control = list(),
format = c("pomps", "array", "data.frame"),
verbose = getOption("verbose", FALSE)
)
## S4 method for signature 'data.frame'
trajectory(
object,
...,
t0,
times,
params,
skeleton,
rinit,
ode_control = list(),
format = c("pomps", "array", "data.frame"),
verbose = getOption("verbose", FALSE)
)
## S4 method for signature 'pomp'
trajectory(
object,
...,
params,
skeleton,
rinit,
ode_control = list(),
format = c("pomps", "array", "data.frame"),
verbose = getOption("verbose", FALSE)
)
## S4 method for signature 'traj_match_objfun'
trajectory(object, ..., verbose = getOption("verbose", FALSE))
Arguments
... |
additional arguments are passed to |
t0 |
The zero-time, i.e., the time of the initial state.
This must be no later than the time of the first observation, i.e., |
times |
the sequence of observation times.
|
params |
a named numeric vector or a matrix with rownames containing the parameters at which the simulations are to be performed. |
skeleton |
optional; the deterministic skeleton of the unobserved state process.
Depending on whether the model operates in continuous or discrete time, this is either a vectorfield or a map.
Accordingly, this is supplied using either the |
rinit |
simulator of the initial-state distribution.
This can be furnished either as a C snippet, an R function, or the name of a pre-compiled native routine available in a dynamically loaded library.
Setting |
ode_control |
optional list;
the elements of this list will be passed to |
format |
the format in which to return the results.
|
verbose |
logical; if |
object |
optional; if present, it should be a data frame or a ‘pomp’ object. |
Details
In the case of a discrete-time system, the deterministic skeleton is a map and a trajectory is obtained by iterating the map.
In the case of a continuous-time system, the deterministic skeleton is a vector-field;
trajectory
uses the numerical solvers in deSolve to integrate the vectorfield.
Value
The format
option controls the nature of the return value of trajectory
.
See above for details.
See Also
More on pomp elementary algorithms:
elementary_algorithms
,
kalman
,
pfilter()
,
pomp-package
,
probe()
,
simulate()
,
spect()
,
wpfilter()
More on methods for deterministic process models:
flow()
,
skeleton()
,
skeleton_spec
,
traj_match
Examples
## The basic components needed to compute trajectories
## of a deterministic dynamical system are
## rinit and skeleton.
## The following specifies these for a simple continuous-time
## model: dx/dt = r (1+e cos(t)) x
trajectory(
t0 = 0, times = seq(1,30,by=0.1),
rinit = function (x0, ...) {
c(x = x0)
},
skeleton = vectorfield(
function (r, e, t, x, ...) {
c(x=r*(1+e*cos(t))*x)
}
),
params = c(r=1,e=3,x0=1)
) -> po
plot(po,log='y')
## In the case of a discrete-time skeleton,
## we use the 'map' function. For example,
## the following computes a trajectory from
## the dynamical system with skeleton
## x -> x exp(r sin(omega t)).
trajectory(
t0 = 0, times=seq(1,100),
rinit = function (x0, ...) {
c(x = x0)
},
skeleton = map(
function (r, t, x, omega, ...) {
c(x=x*exp(r*sin(omega*t)))
},
delta.t=1
),
params = c(r=1,x0=1,omega=4)
) -> po
plot(po)
# takes too long for R CMD check
## generate a bifurcation diagram for the Ricker map
p <- parmat(coef(ricker()),nrep=500)
p["r",] <- exp(seq(from=1.5,to=4,length=500))
trajectory(
ricker(),
times=seq(from=1000,to=2000,by=1),
params=p,
format="array"
) -> x
matplot(p["r",],x["N",,],pch='.',col='black',
xlab=expression(log(r)),ylab="N",log='x')